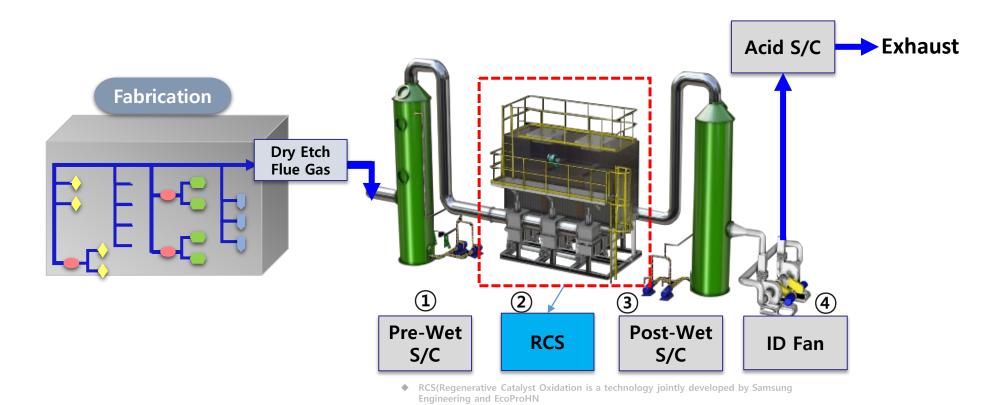


Large Capacity PFC Catalytic Abatement

- 1 Technical Overview
- 2 System Configuration
- 3 Heat Recovery Technology
- 4 Performance (Lab. Data)
- 5 Field Data for PFCs Gas Removal Efficiency
- 6 PFC Catalyst (Next Generation)
- 7 WASTE (Catalyst / Heat Sink Material) RE-USE TECHNOLOGY

1. Technical Overview

Green House gases(GHG) & Global Warming Potential(GWP)


6 Major GHG	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆
Sources of Emission	Fuel use	Waste, Agriculture, Landfill	Fertilizer use, Nitric acid, Caprolactam	Refrigerant, Foaming agent	Semiconductor manufacturing	LCD Electrical insulator
GWP	1	21	310	140 ~ 11,700	6,500 ~ 9,200	23,900
Green House Effect(%)	55	15	6		24	

^{*} Global Warming Potential

GWP is a measure of how much heat a greenhouse gas traps in the atmosphere up to a specific time horizon, relative to carbon dioxide. It compares the amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of carbon dioxide and is expressed as a factor of carbon dioxide (whose GWP is standardized to 1.

1. Technical Overview

① Pre-Wet SCR	② RCS	③ Post-Wet SCR	④ ID Fan
Catalytic poisoning Removal (HF, Cl_Gas, Dust, etc.)	CF ₄ , SF ₆ etc PFCs Gas decomposition Eff.: 95% based on CF ₄ Operation Temp.: 780°C	Treatment of by-product of PFCs (HF, SOx, etc.)	Maintain Process flow and static pressure

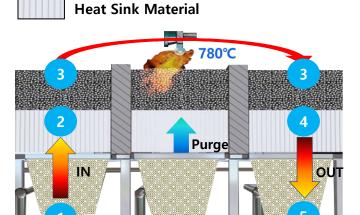
2. System Configuration

Differences from Existing Technologies

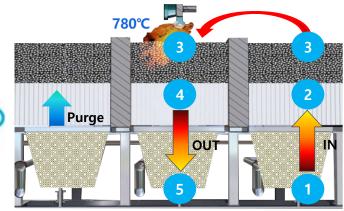
List	Burn / Electric Heat Type	Central RCS
Characteristic	· Degradation of greenhouse gases at high temperature above 1,300 ℃	 Degradation of greenhouse gases at high temperature above 700 °C
Remark	 · High operation cost · Excessive energy consumption · Maintenance and fire hazard ≯ 	 Low operation cost (Amount of energy generated ↘) Implemented large capacity integrated processing on the roof and ground Eliminating the fluorine compound, environment friendly equipment NOx Emission minimized Much less risk on fire hazard Available for RCS installing at existing FAB running 24 hours

2. System Configuration

Consist of RCS and Function


Name	Description
① Catalyst	Catalytic reaction degrades PFCs GAS decomposition temperature Over 1300°C ▶ Over 700°C (Energy Saving)✓
② Heat Sink Material	PFCs gas recovers high-temperature heat after passing through catalyst ,so that saving operating costs even at high temperatures Heat recovery efficiency 95% ↑ (Energy conservation)
3 Refractory Material	Uses special refractory materials with high corrosion resistance against PFC and HF
4 Casing	Application of strong corrosion resistant material Casing to HF
⑤ In/Out Damper	Poppet type damper with the best durability applied for periodic switching operation

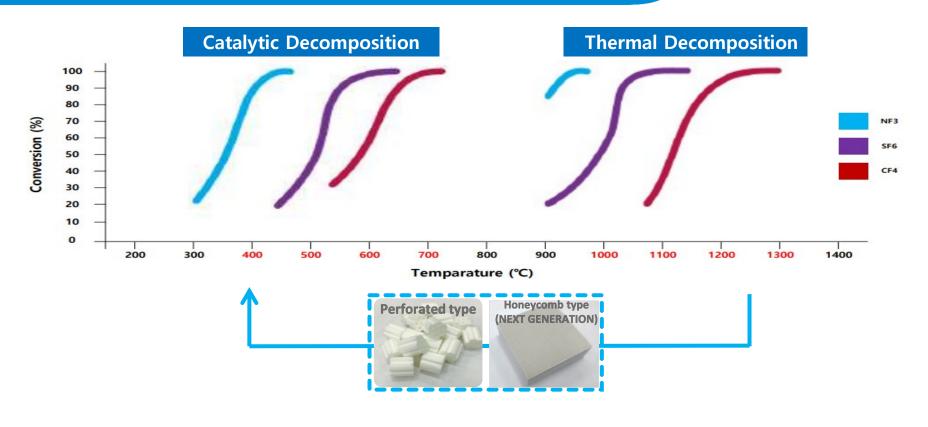
3. Heat Recovery Technology



Heat recovery process of RCS

- ① Input process gas (25 °C~30 °C)
- ② It absorbs heat at almost the decomposition temperature level (over 700℃)
- **③ PFC** gas is decomposed by passing through catalyst layer
- **4** And then, the PFC gas of high temperature release hot heats to the HSM.

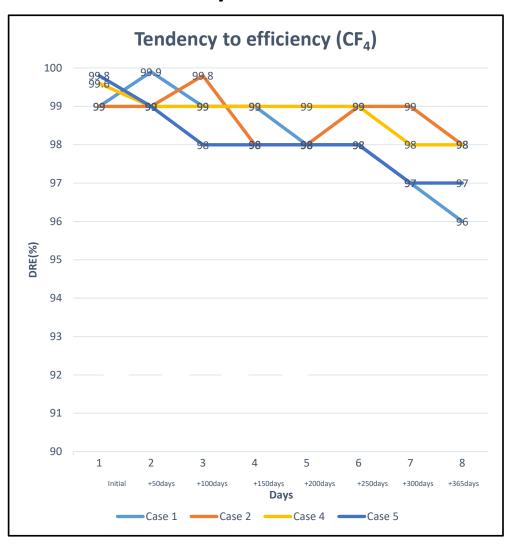
That is the Heat recovery technology.


(In other words, Heat regenerator is recovered thereby the HSM absorbs the hot heats.)

(5) Exhaust gas (high temperature : $60 \sim 70$ °C) is higher than the input gas.

Thus, the heat recovery rate is about 95%.

4. Performance (Lab. Data)

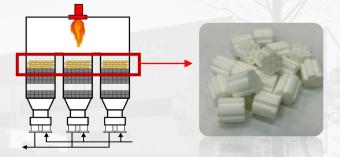


5. Field Data for PFCs Gas Removal Efficiency

1. Possibility and Effectives on RCS treatment 2. Field Data for 1 year

Design Parameter		Possibility of RCS Treatment	Effectives on RCS
HF, BCI ₃ , CI ₂ , HBr		X	Catalyst performance degradation
CF ₄		0	
	C ₄ F ₆		
	C ₄ F ₈	o	
C-F compound	CH ₂ F ₂	Proposing to	
Compound	CH₃F	≥95%	
	CHF ₃		
SF ₆		O Proposing to ≥95%	
NF ₃		O Proposing to ≥95%	Occur NOx
CC)	0	
Sulfur compounds (COS, SO ₂)		Х	No problem RCS itself (Cause catalyst performance decrease)
Silica compounds (SiH ₄ , Si ₂ H ₆ , SiF ₄ , (SiH ₃) ₃ N)		×	Masking, (Cause catalyst performance decrease)
02		X	X
Inert Gas (N ₂ , He, Ar, etc)		Х	X

6. PFC Catalyst (Next Generation)


Removal of Green House Gases (GHG)

■ PFCs removal technology emitted from semiconductor and display manufacturers

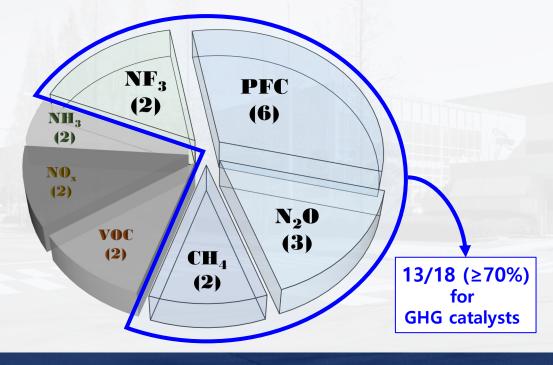
- The 1st world supplier of large-scale catalytic system for PFCs removal
- ECOPRO HN's proprietary rights on "RCS system"
- Offer exceptional expertise in the entire RCS system over 20 yrs
- Develop our specialized products and technology for customer satisfaction
- Principal Characteristics (vs. thermal decomposition)
 - Lower the PFCs removal temperature (780°C) by hydrolysis catalytic reaction in RCS system

Samsung newsroom 2016 sustainability report

ITEM	Thermal	Catalytic
Removal Temp. (°C)	1,300-1,400	700 - 800
CF ₄ removal rate (%)	< 90	> 90
Relative fuel usage	20	1

Removal Rxn.

- CF₄ + 2H₂O → 4HF + CO₂
- $SF_6 + 2H_2O \rightarrow 4HF + SO_2$



Catalyst R&D Organization

- **GHG Catalyst Specialized Team Organization**
 - Catalyst R&D Team
 - : Focus on developing GHG catalysts for 100% DRE

PFC Catalysts

: 6 specialists with other 7 GHG researchers

Everyday Everywhere **ECOPTO** HN

History of PFC Catalysts

Core value of PFC catalyst: From catalyst itself to integrated system (Cat. + Sys.)

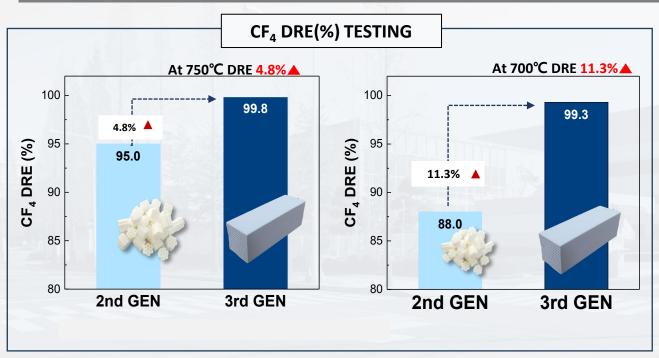
Lifetime 1

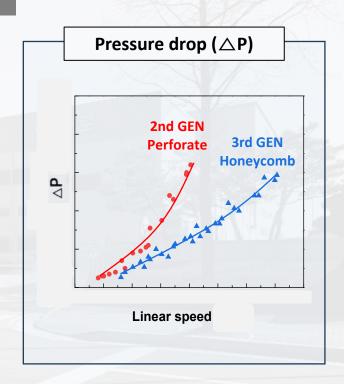
CF₄ DRE ↑

MRO J

MRO 🔻

commercialized

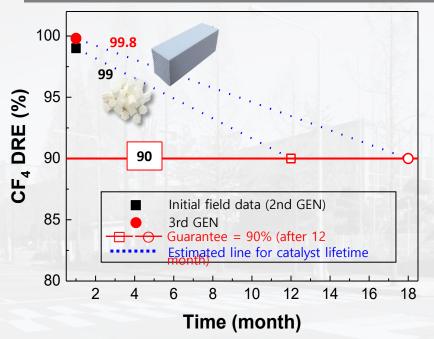

^{*} Target DRE at 750°C



3rd GEN PFC Catalyst Performance

■ Enhancement of CF₄ DRE & pressure drop

Comparison 2nd GEN Perforate with 3rd GEN Honeycomb

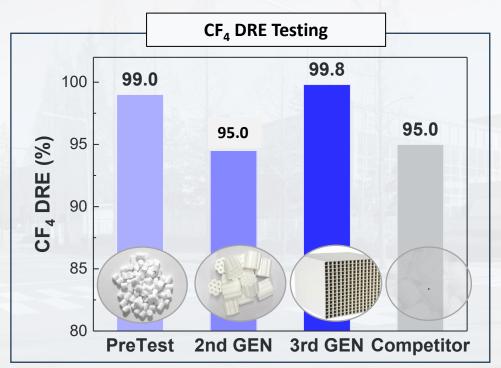


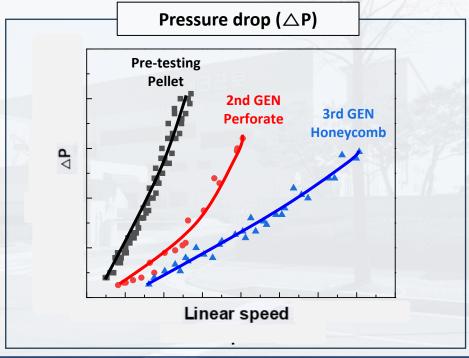
3rd GEN PFC Catalyst Performance

I Estimate 6 month lifetime longer than 2nd GEN

Estimate 3rd GEN honeycomb lifetime based on the field data

Es	timate a decay rate fo	r 2nd GEN PFC catalyst (F	Perforate)	
PFC Catalyst	Initial CF ₄ DRE (%)	Guarantee CF ₄ DRE (%)	Decay rate (%/month)	
Field data	99	0 = = 90	0.75% ▼/MO N.	
Estimate lifetime				
PFC Catalyst	Initial CF4 DRE (%)	Guarantee CF4 DRE (%)	Lifetime (month)	
2nd GEN	99.0	90	12	
3rd GEN	99.8	90	18 (6 MON. ▲)	
NOTE	* Lifetime is changed	d depending on gas condi	ition.	


▶ When applying 3rd GEN PFC catalyst, extend ~6 months lifetime



Compare ECOPRO HN vs. Competitor

I CF₄ DRE (%) for ECOPRO HN & Competitor

CF₄ 2,000 ppm & Temp. 750°C

Evaluation of PFC Catalysts

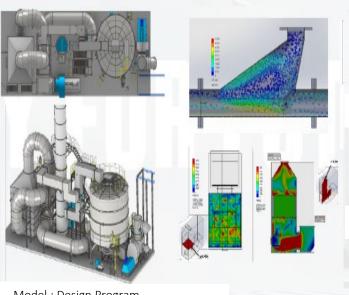
■ Catalyst Evaluation System for achieving PFC 100% DRE

DRE Evaluation Testing for PFC Catalysts

Micro-Reactor	Bench-scale Reactor	Pilot-scale Reactor
0.06 m ³ /h	0.1 m ³ /h	1 m³/h
10 units	2 units	2 units

Pressure

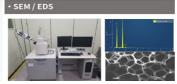
	Bench-scale	
1	Applied Vol. = 5L	1
	1 unit	



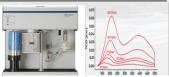
Characterization of PFC Catalysts

Various analytical instruments

Engineering Program Simulation



Model: Design Program


Characterization

Model:Hitachi S3400N/X-MaxN20001 Purpose: surface Analysis

Model:Micromeritics Tristar II Purpose: Specific surface area Analysis

Model:Micromeritics Chemisoption Purpose: Chemical Adsorption Analysis

Model:Rigaku Ultima IV Purpose: Structure Analysis

Model:IG-1000 Purpose: Efficiency Analysis

XRF

Model:Rigaku XRF Purpose: Material Analysis

Physical Characterization

7. WASTE < Catalyst / Heat Sink Material > RE-USE TECHNOLOGY

Major Application ECOPROHN is working on

Customer Additive

Excellent heat resistance and high early strength

Calcium aluminate cement is inorganic binder that is resistant around 1400 ~ 1800°C for refining, smelting as well as fabricating and casting.

And after construction, it hardens fast and makes available to demold in a day.

Therefore, it is applied to facilities of not only heavy & chemical industry, but also boiler, incinerator etc. that claim high temperature conditions.

Heavy Chemical Industry, Incinerator Etc

Al2O3 Cement

ECOPro HN